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Chapter 1

Introduction

This document describes self-evaluation results of the 128-bit blockcipher
CLEFIA.

Cryptographic technologies are advancing: new techniques on attack,
design and implementation are extensively studied. In these years crypto-
graphic functions are implemented in wider field of applications, and there
are growing needs for low-cost implementation of cryptographic technologies
with high level of security and high performance.

The design philosophy of CLEFIA is to achieve both of high security
and high performance on many platforms in software and hardware using
the state-of-the-art techniques for design and cryptanalysis.

Design Philosophy

Security There are many known cryptanalytic techniques for blockci-
phers. It is essential to show a quantitative evaluation on the security against
general cryptanalyses such as differential cryptanalysis [10] and linear crypt-
analysis [43] to have confidence in security. CLEFIA adopts the Diffusion
Switching Mechanism (DSM) [63-65], which is a novel technique to enhance
the immunity against differential cryptanalysis and linear cryptanalysis by
using plural different diffusion matrices. We aimed to show quantitative
evaluations on the security against these attacks. Moreover, CLEFIA is
designed considering extensively immunity against all other known crypt-
analysis as far as we know.

Furthermore, CLEFIA is designed based on the state-of-the-art cryptan-
alytic techniques presented after the blockciphers in the current e-Government
recommended ciphers list were designed, because cryptanalytic techniques
for blockciphers are evolved day by day [9,14,15,18]. In particular, recent
researches of related-key attacks make remarkable progress. These attacks
are serious threats for blockciphers with a simple key scheduling part such as
AES. The key scheduling part of CLEFIA is designed to show a quantitative
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evaluation on the security against differential attacks, and to resist against
related-key attacks.

Performance As cryptographic primitives are implemented in many
applications and in various environments, they are expected to be imple-
mented on a wide range of platforms. From this point of view, AES has
exellent properties. Therefore, CLEFIA is aimed to be designed to have
advantages over AES. Since AES was designed, several 128-bit blockciphers
have been designed. However there are few blockciphers that achieve higher
performances than those of AES. Our design goal was to achieve both of
speed and cost for implementations keeping high level of security by using
state-of-the-art techniques for design and cryptanalysis. As a result, soft-
ware performance of CLEFTA is comparable to AES, and hardware efficiency
of CLEFIA provides remarkable advantages over AES.

Advantages over Existing Blockciphers Since CLEFIA was accepted
and presented at Fast Software Encryption Workshop (FSE 2007) in 2007 [66],
many results on cryptanalysis of CLEFIA have been published [73,78,79,83,
86], however, there is no known security concern on the full-round CLEFTA
so far. On the other hand, it is revealed that AES with 192-bit and 256-bit
keys do not have expected security, although it is under a special related-key
attack scenario [14,15]. CLEFIA is designed to resist related-key attacks,
which is of advantageous to increase confidence in its security.

In software, CLEFIA with 128-bit keys achieves about 12.9 cycles/byte,
1.48 Gbps on a 2.4 GHz AMD Athlon 64. This result shows that software
performace of CLEFIA is classified into the fastest group of blockciphers in
the current e-Government recommended ciphers list.

In hardware, CLEFIA with 128-bit keys can be implemented with less
than 5K gates by using a 0.09 pm CMOS ASIC library. This is in the
smallest class among the blockciphers in the current e-Government recom-
mended ciphers list. For speed optimized implementations, the performance
of CLEIFA achieves 1.6 Gbps with about 6 Kgates and 3 Gbps with about
12 Kgates. From these results, CLEFIA is unique in hardware efficiency,
which is defined by throughput per gate.

On the Use in e-Government Systems To compile the e-Government
recommended ciphers list (draft), CRYPTREC performed security evalu-
ations in order to select cryptographic techniques that satisfy the level of
security sufficient for the e-Government system. CRYPTREC required that
symmetric-key cryptographic techniques should satisfy either of the follow-
ing conditions [27].

e Even with the best attacking technique available to date, computa-
tional cost of 2!2% or more (i.e. exhaustive search for a secret key) is
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required to break selected symmetric-key cryptographic techniques. It
is necessary for the techniques to be shown that they are secure against
typical attacking techniques such as differential and linear cryptanal-
ysis.

e Widely used symmetric-key cryptographic techniques which have been
evaluated in details and have no security problems in a realistic system,
are selected. In this case, computational cost of 21%° or more is required
to break them.

As shown in Chapter 3, security of CLEFIA satisfy the first item above,
therefore, it is considered that CLEFIA satisfies the level of security suffi-
cient for the e-Government system.

Regarding implementation performance, as shown in Chapter 4, CLE-
FIA achieves high performance both in software and hardware. Therefore,
CLEFTA is suitable for all applications in Japan e-Government systems that
require high implementation performance.

Furthermore, CLEFIA has advantages in compact hardware implemen-
tations. So it is recommended to use CLEFIA in products and systems with
constrained environments.
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Design Rationale

This chapter describes design rationale of CLEFIA [66,71].

CLEFTA is designed to realize good balance on three fundamental direc-
tions which are considered as important for practical ciphers: (1) security,
(2) speed, and (3) cost for implementations. To achieve these goal, several
kinds of design technologies are contributed. Summary of special features
of CLEFIA in design aspect is listed as follows.

1.

The first blockcipher employing the Diffusion Switching Mechanism
(DSM) to enhance the immunity against the differential attack and
the linear attack [10,43]

. Compact F-functions realized by employing a 4-branch generalized

Feistel structure

Enhanced immunity against a certain class of attacks by using a two
S-boxes system

Using only lightweight components for efficient implementations of
software and hardware

Enabling shared implementation of the data processing part and the
key scheduling part

A new key scheduling algorithm realizing strong immunity against
related-key attacks

The details of these features are explained in the following sections.

2.1 Data Processing Part

In this section, design rationale for the data processing part of CLEFIA are
described.
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2.1.1 Fundamental Structure

CLEFIA employs a generalized Feistel structure which is an extension of
the traditional Feistel structure. Generalized Feistel structure has three or
more data lines as opposed to two data lines in traditional Feistel structure.
There are many types of generalized Feistel structures depending on the
connected positions of the input and the output of F-functions to the data
lines. Among them, we choose one structure which is known as “Generalized
Type-2 transformation” defined in Zheng et al.’s paper [87]. Figure 2.1 shows
the 4-branch case of Type-2 structure. Since the block length of the cipher
is 128 bits, the width of each data line is 32 bits. The type-2 structure has
two F-functions in one round in the 4 data lines case. The first F-function
is applied to the first data line and the other is applied to the third data
line.

i-th round

Figure 2.1: One round of the 4-branch Type-2 generalized Feistel structure

The Type-2 structure has the following features:
o Two F-functions can be processed simultaneously

o The size of F-functions is smaller than that in traditional Feistel struc-
ture

o The structure tends to require more rounds than traditional Feistel
structure

The first feature is suitable to high-performance hardware implementa-
tions, and the second is of great advantage to software and hardware imple-
mentations. The last feature is a disadvantage of 4-branch structure because
the diffusion speed of smaller F-functions is slower. But we succeeded to get
rid of this disadvantage by introducing a new design technique, called DSM,
explained in this document later. Consequently, CLEFIA mainly benefits
from the first two advantages.

Pioneer research on the generalized Feistel structures is done by Zheng,
Matsumoto and Imai [87], followed by the work by Nyberg [52]. The block-
cipher RC6 also employs the Type-2 structure with slight modification, and
it achieves good efficiency performance partially due to this structure [59].
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In the security aspects, Moriai and Vaudenay treated pseudo-random prop-
erty of the generalized Feistel structures [49]. Furthermore, Knudsen and
Wagner presented with regard to integral cryptanalysis [36], and Kim et al.
discussed with regard to impossible differential cryptanalysis [34].

2.1.2 F-functions

The F-function of CLEFIA is the so-called SP-type F-function which means
Substitution layer and Permutation (Diffusion) layer are applied in this order
after a round key addition [71]. This type of F-function is used in many
blockcipher designs including Camellia [3] and Twofish [62]. CLEFIA uses
four 8-bit S-boxes in the Substitution layer and a 4 x 4 diffusion matrix in
the Permutation layer. This F-function can be implemented efficiently in
software by using the table-lookup technique [22].

2.1.3 Key Whitenings

CLEFTA employs key whitenings at the beginning and the end of the data
processing part [71]. The whitening operation at each part is done for only
half of 128-bit data (i.e. two of four data lines), because these partial whiten-
ings provide enough key information (entropy) for the data processing part.
This is explained by using an equivalent transformation of round keys of
generalized Feistel structure. Figure 2.2 shows the two generalized Feistel
structures in which key addition layer is explicitly described out of the F-
function. The two structures are equivalent. This figure shows that the
full key whitening can be always converted into half key whitening and vice
versa. Therefore, we designed CLEFIA using half key whitening to reduce
the cost of key additions.

2.1.4 Diffusion Matrices

CLEFIA employs two different diffusion matrices My and M7 to enhance
the immunity against the differential attack and the linear attack by using
the Diffusion Switching Mechanism (DSM). This concept was first proposed
by Shirai and Shibutani in 2004 followed by extended works by Shirai and
Preneel, but it was applied to only the traditional Feistel structures [63—65].
We customized this technique suitable to the Type-2 generalized Feistel
structures, which is one of the unique selling propositions of this cipher.
By using this technique, we can prevent difference cancellations and linear
mask cancellations in the neighborhood rounds in the cipher. As a result
the guaranteed number of active S-boxes is increased.
To explain the mechanism, we introduce the following definitions.
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Figure 2.2: Equivalent Structures

Definition 2.1. Let z € {0, 1}? be represented as x = (vox1 . ..xp_1) where
z; € {0,1}, then the bundle weight wy(x) is defined as

wi(x) =4#{i|0<i<p-—1,2; #0} .

Definition 2.2. Let P : {0,1}?" — {0,1}4. The branch number of P is
defined as
B (P) = min{w;(a) + wi(P(a))} .
a#0
To utilize the DSM technique we need at least two matrices which satisfy
certain branch number conditions. In CLEFIA’s case, the two 4 x 4 matrices
My and M; whose elements are in GF(2®) hold following conditions.

Bg(Mo) = Bg(Ml) =5 .

10
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This is an optimal branch number for matrices with this size. Besides
that, the branch numbers of combined matrices Mo|M; and M ! M ! are
also 5, which is also an optimal case as:

Bs(Mo|My) = Bs("My ' |'M{') =5 .

When My and M; are put in the F-functions of CLEFIA as Figure 2.3,
it is expected to hold good diffusion property by the synergy of these two
matrices in neighboring F-functions [71]. In the figure, the data lines of
Feistel structure are untwisted, accordingly positions of the F-functions are
moved to correct positions. This technique is called the Diffusion Switching
Mechanism (DSM), and detailed mechanism and the effects are described in
Section 2.3.

A—S

B—~¢

Figure 2.3: Allocation of My, M1, Sy and Sy

Table 2.1 lists the effect of the DSM by showing the guaranteed number
of active S-boxes of CLEFIA. These values are obtained by a computer
simulation using a weight-based evaluation method.

The columns indicated by ‘Normal’ show the guaranteed number of ac-
tive S-boxes for generalized Feistel network without using the DSM tech-
nique while employing a single optimal diffusion mapping for all F-functions.
The columns indicated by ‘DSM(D)’ show the guaranteed number of differ-
ential active S-boxes when using the DSM with optimal matrices My and

11



CHAPTER 2. DESIGN RATIONALE

Table 2.1: Guaranteed Numbers of Active S-boxes

r | Normal | DSM (D) | DSM (L) || = | Normal | DSM (D) | DSM (L)
1 0 0 0 14 25 34 34
2 1 1 1 15 26 36 36
3 2 2 ) 16 30 38 39
4 6 6 6 17 32 40 42
5 8 8 10 18 36 44 46
6 12 12 15 19 36 46 48
7 12 14 16 20 37 50 50
8 13 18 18 21 38 52 52
9 14 20 20 22 42 55 95
10 18 22 23 23 44 56 o8
11 20 24 26 24 48 59 62
12 24 28 30 25 48 62 64
13 24 30 32 26 49 65 66

M;. Similarly, ‘DSM(L)’ means the guaranteed number of linear active S-
boxes for a corresponding round. From this table we can confirm the effect
of the DSM when r > 3, and these guaranteed numbers increase about
20% — 40% than the ‘Normal’.

The search algorithm for the above estimation is described in Sec. 2.3.
We also have theoretical results of lowerbounds of DSM [67]. Theorems of
DSM for Type-2 generalized Feistel structure are described in Sec. 2.3.

There are two side effects due to introducing the DSM technique: one is
a partially destroyed involution property of generalized Feistel structure and
the other is that additional cost for implementing two matrices is expected.
But we have confirmed these side effects have limited impact on efficient
implementation. With regard to the involution property, we can avoid the
problem by only changing the swapping order of data in the encryption and
the decryption. Moreover, the penalty due to using two matrices is limited,
because the size of matrices is not too large.

Here we compare the effect of the DSM technique to Camellia and
Twofish, which are also employing 8-bit S-boxes and a Feistel structure.

CLEFIA and Camellia can be viewed as Feistel ciphers using a diffusion
matrix with the same branch number, 5. According to [3], there are 18,
21 and 22 differential active S-boxes for 9, 10 and 11 rounds, respectively.
Also, there are 18, 20 and 22 linear active S-boxes for 9, 10 and 11 rounds of
Camellia without FL/FL~!. These numbers are larger than CLEFIA using
a single matrix, but smaller than CLEFTA with the DSM technique. In other
words, by using two diffusion matrices with the DSM technique, CLEFIA

12
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has more immunity against differential/linear cryptanalysis. Although a
generalized Feistel structure has a worse diffusion property due to smaller
diffusion matrices, DSM compensates the shortage without big investment.

Twofish also employs two 4 x 4 matrices with maximum branch number
5 in the round function. The designers claimed that Twofish has 20 guar-
anteed active S-boxes in 12 rounds [62]. The claimed number of estimated
guaranteed active S-boxes is also smaller than CLEFIA.

Consequently, it is expected that the diffusion performance of CLEFIA
is better than that of Camellia and Twofish by observing the known active
S-box estimations.

Choices of two Diffusion Matrices

Two matrices have to satisfy the aforementioned optimal branch number
conditions. But there are huge number of matrices satisfying the conditions,
so we chose actual two matrices taking a cost of hardware implementation
into consideration.

Candidate matrices were 4 x 4 circulant and Hadamard-type ones. An
Hadamard-type matrix is used in blockcipher Anubis [4], and each element
in an m x m Hadamard matrix is defined as h;; = a;q; for a certain set
of (ag,...,am—1). We checked all circulant matrices and Hadamard-type
matrices which have low hamming weights, then we found the best matrices
which can be implemented efficiently in hardware because the number of
XOR gates is very small. As a result, two matrices My and M7 for CLEFIA
are decided as Hadamard-type matrices.

2.1.5 S-boxes

CLEFIA employs plural types of S-boxes as in Serpent and Camellia [1,3].
We believe that the reason for choosing CLEFTA’s plural S-boxes is based
on the following criteria and expected effects.

1. Good immunity against known attacks

2. Suitability for efficient hardware implementation

Then we first decided to employ two types of S-boxes for the security
reason, then we choose actual two types of S-boxes taking the above imple-
mentation property into consideration. By adopting two S-boxes, we expect
the following effects with regard to security.

o To enhance the immunity against the byte-oriented saturation attacks
[19], and

o To enhance the immunity against algebraic attacks including the XSL
attack [18].

13
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Table 2.2: Security Parameters of Sy and 57

S0 S1
274.67 276.00

2—4.38 2—6.00

maximum difference prob.
maximum linear prob.
minimum degree (Boolean) 6 7
minimum number of terms over GF(28) | 244 252

The reasons are explained in this section later. CLEFIA employs two
different types of 8-bit S-boxes Sy and S1. These two S-boxes are categorized
as:

o Sp : 8-bit S-box based on randomly chosen 4-bit S-boxes
o S; : 8bit S-box based on the inverse function over GF(2%)

The ways to select concrete two S-boxes and the influence on the security
are described in the following subsections.

S-box based on 4-bit S-boxes

The first S-box Sy is based on 4-bit S-boxes. It consists of 4 different 4-bit
S-boxes, and all the (4-bit) S-boxes are connected by a 2 X 2 matrix over
GF(2*) defined by a primitive polynomial z* 4 x 4 1. The branch number
of the matrix is equal to 3 which is an optimal diffusion. The four 4-bit
S-boxes are selected from random bit strings generated by AES with the
counter mode. Table 2.2 shows the several security parameters of Sp.

S-box based on inverse function over GF(2%)

The second S-box S; is designed based on the inverse function in GF(2%).
The used irreducible polynomial is z® + 24 + 2% + 22 + 1. Additionally,
there are affine mappings before and after the inverse operation to enhance
immunity against the interpolation attack [28]. Table 2.2 shows the several
security parameters of .S7.

Enhancing immunity against byte-oriented saturation attacks

The first effect of using two different S-boxes is to avoid collisions of the
output values of the S-boxes. Let X; € {0,1}% (0 < i < 255) be 256 8-
bit variables. Now we classify X; into four groups depending on conditions
satisfied by all elements in the set. X; (0 < i < 255) is called:

o Const (C) :ifVi,j X;=Xj,

o A1l (A) :if Vi, j ’L#]@XZ#X],

14
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o Balance (B) :if @Xi =0,

(2
o Unknown (U) : unknown.
Then consider a toy example that an F-function contains only one 8-bit

round-key addition layer and a substitution layer using one 8-bit S-box (see
left of Figure 2.4).

X; Y; X; Y;
A1l Const A114 Const
8 Kl 8 8 Kl 8
Const
Ill_l All, Const AL,
/4 15 ] 150]
Const 1 All, Consty / """""""" All,
Z; ——+& All, + Const $+—— A, Z; —@ All; + Const ¢—— A;
K2 KZ
"""" Const | Const
Alls Allg
/4 L] 151]
s [~
All; 4+ Const Const All; + Const Balance
B; B;

Figure 2.4: An Example of Saturation characteristic

Suppose that X; is A1l and Y; and Z; are Const. Note that this assump-
tion is reasonable especially in generalized Feistel structures like CLEFIA.
Then, B; is expressed as:

Bi=S(Xi0oK1)©S(X;©Z; © K2) @Y, .

Usually, we expect B; be Balance, because two Alls from the both of S-
boxes are XORed. However, B; can become Const in certain situations.
When the constant values have relations Z; = K7 & K», the outputs of two
S-boxes always collide, as a result B; = Y;. This happens with probability
p = 1/256 in this setting.

However in CLEFIA, two S-boxes Sp, S satisfy the following condition,

For any c1,co, Jx So(z) # Si(x @ 1) D co.

We can avoid the above cancellation of saturation characteristics. Putting
So and Sp as the right of Figure 2.4, B; won’t be Const due to the S-box
property, because two A1ls XORed will be never canceled due to the above
condition.

15
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Although this is a toy example, and an actual cipher employs more
complicated matrices, we consider that a similar situation can also happen
if all S-boxes in a cipher are the same S-box. Therefore we employed two
S-boxes and changed the order of S-boxes in two F-functions to avoid the
weak property explained above.

Enhancing immunity against algebraic attacks

Previous works on algebraic attacks [18,28,37] showed us that relying only
on specific algebraic functions, e.g. the inversion function in a Galois Field,
is not a good way from the view point of security against algebraic attacks.
To resist algebraic attacks the designers of blockciphers have adopted sev-
eral ideas, e.g. using “random” S-boxes [1,31], mixed use of S-boxes with
different sizes [47], or constructing from random 4-bit S-boxes [4,29], some
of which required much implementation cost. In designing CLEFIA, we
adopt a novel countermeasure which increases the immunity against alge-
braic attacks without big penalty on implementation cost. The solution is
to prepare two different 8-bit S-boxes and mixing up of these S-boxes in the
cipher.
Two types of 8-bit S-boxes of CLEFIA are:

o 8-bit S-box based on randomly chosen 4-bit S-boxes
o 8-bit S-box based on the inverse function in GF(2%)

We excluded a randomly chosen 8-bit S-box because the cost of hardware
implementation is too large for CLEFIA. Both of above S-boxes are more
advantageous than a randomly chosen 8-bit S-box with regard to efficient
hardware implementations.

It is known that the inverse function based S-box is optimal with re-
gard to differential probability and linear probability, but it is reported that
there are simple algebraic relation over GF(2) and GF(2%). If the cipher
uses only the inverse function based S-boxes, then its immunity against the
XSL attack over GF(2%) is considered to have potential weakness than that
over GF(2) [50]. Moreover, Daemen and Rijmen presented a new result on
behavior of inverse function based S-boxes such that there are plateau trails
in it [21]. That’s why we don’t want to use an inverse function based 8-bit
S-box only.

On the other hand 8-bit S-boxes based on 4-bit S-boxes is not optimal
regarding differential and linear properties, but the compactness in hard-
ware implementation is very attractive. It is also known that there are
simple relation over GF(2) in 8-bit S-boxes based on 4-bit S-boxes, but sim-
ple quadratic relations over GF(2%) are not expected. Using an estimation
method for complexity of the XSL attack, the immunity against the XSL at-
tack over GF(2) of this type of S-box is expected weaker than inverse based

16
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S-box [18]. That’s why we don’t want to use a 8-bit S-boxes based on 4-bit
S-boxes only.

Also, we saw trends of choice of S-boxes in literatures, in a certain period
of time many blockcipher designers used the inverse function based 8-bit S-
boxes as in AES/Rijndael, Camellia, Misty, Hierocrypt-3 and so on. Then
8-bit S-boxes based on 4-bit S-boxes are tend to be used as in Whirlpool!,
Anubis and FOX [3-5,22,29,47,53]. Our approach is different from the
above trends.

In CLEFTA half of S-boxes are the inverse function based 8-bit S-boxes
and the others are 8-bit S-boxes based on 4-bit S-boxes. This design makes
the cipher stronger against the XSL attack in both over GF(2) and GF(2%),
though big penalty in hardware implementation isn’t required as only ran-
domly chosen 8-bit S-boxes are employed.

Positions for Sy and 5

The two S-boxes system is suitable for CLEFIA because DSM has been
already employed in which two distinct F-functions exist. In the first F-
function Fy, the four S-boxes are chosen as Sy, S1, 5y, and Sy in this order,
then in the second F-function £} the order of S-boxes is 51, .Sy, S1, and Sp.
It is obvious that there are the same number of 4-bit based S-boxes and
inverse based S-boxes in CLEFIA, and it is guaranteed that a certain byte
in the data line of generalized Feistel structure is applied the both of S-
boxes alternatively (see Figure 2.3). Thus this construction is enough to
enhance the immunity against the byte-oriented saturation attack and the
XSL attack. Note that there are two Sy and two S in the both of Fj; and
Fy, this is good property for implementation aspect taking sharing resources
into account.

2.2 Key Scheduling Part

In this section, we mention the design rationale of the key scheduling part
of CLEFIA. Properties of the key scheduling part of CLEFIA are as follows:

1. Intermediate key L is generated from a key K by a permutation based
on the data processing part of CLEFIA. As a result, strong immunity
against related-key attacks is expected.

2. L is employed as round keys at certain rounds to exclude equivalent
round keys.

3. K@ L is employed as round keys at certain rounds to benefit from the
property of the one-wayness K — K @ L which means it is difficult to
recover K from K @ L.

' A hash function included in ISO/IEC 10118-3 standard.

17
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4. Although the permutation function to generate L is comparatively
heavy, the cost of generating round keys from a key K and an inter-
mediate value L is kept light-weighted.

5. The above features are valid for the key scheduling steps for any key
length.

Details for the above properties are explained in this section.

2.2.1 Employing GFN,; for 128-bit key

GFNy 12 is a 12-round CLEFIA without key scheduling part and key whiten-
ings. The round keys for GF'N, 12 are fixed constants. GFNy 12 is used in the
key scheduling step of 128-bit key CLEFIA. We consider that GFNy 12 has a
good difference propagation property, it means that controlling the output
difference of GFN, 19 is very difficult even though attacker can control the
input difference of it. If GFNy 12 is used in the key scheduling part properly,
we can construct a blockcipher for which related-key attacks will be very
difficult.

From the previous evaluation result, we know that there are 28 differ-
ential active S-boxes and 30 linear active S-boxes in 12-round CLEFIA and
highest D P4z is 27467 and highest L Py, is 27438 due to Sp. As a result,
we can assure that there are no differential characteristics or linear approx-
imation with probability more than 27128 because 28 x 4.67 = 130.76 and
30 x 4.38 = 131.40. This is only saying about characteristics but not about
differential and linear hulls, thus we cannot conclude that there is no good
differentials or linear hulls in GFNy4 12. However, CLEFIA uses S-boxes Sy
with DPpae = LPmae = 27°, the actual margin of characteristic probability
is expected to be larger than this estimations. Detailed discussion on the
margin of characteristic probability is presented by Daemen and Rijmen [20].

2.2.2 Employing GFNg,, for 192/256-bit keys

GFNg 10 is a 10-round generalized Feistel structure with 8 data lines, the
width of each data line is 32 bits. The round keys for GFNg 19 are fixed
constants determined by the key length. The input/output data length of
GFNg 10 is 256 bits. GFNg 19 is used in the key scheduling step of 192/256-
bit key CLEFIA. If GFNg o is used in the key scheduling part properly,
we can construct a blockcipher for which related-key attacks will be very
difficult.

From the evaluation result shown in Table 2.3, we know that there are
at least 29 differential active S-boxes in GFNg19. We can assure that there

are no differential characteristics with probability more than 27128 because
929x (—4.67) _ 9—135.43
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Table 2.3: Active S-boxes for 8-branch Generalized Feistel structure

6 7 8 9 10 11 12

rounds 5
8 12 14 21 24 29 34 39

N

1 3 4
active | O 2 6

2.2.3 Mixed Use of K and L

In the 128-bit key scheduling part of CLEFTA, a 128-bit intermediate value
L is generated from the key K by using GFNyi2. Then both of the K
and L are mixed up in the generation steps of round keys. The advantage
of this usage is noticed when conducting the exhaustive search for K and
L. It is difficult to guess even one bit information in K from only partial
information of L, and vice versa, because any single bit in K depends on
the all bits in L by the permutation GFN, 12. Consequently, if K and L are
allocated appropriately to generate round keys, we can strengthen a cipher
against such attackers.

Similarly in the key scheduling part of 192 and 256-bit keys, two 128-
bit intermediate values Ly, Lr are generated from the key Ky, Kr by using
GFNg19. The same effect will be expected also in 192-bit and 256-bit key
cases.

2.2.4 DoubleSwap function

In the round key generation process of CLEFIA, the intermediate values
L,L; and Lp are updated by a DoubleSwap function in every two rounds
repeatedly. One reason this is to destroy simple relation between round
keys. Moreover, comparing to a rotation operation, the DoubleSwap func-
tion enables efficient hardware implementation.

2.2.5 Flexibility for Implementations

We designed the key scheduling algorithm for 128, 192 and 256-bit keys
and data processing part to be able to share common components. All key
scheduling algorithms use GF'Ny 12 or GFNg 19 which are based on the data
processing part of CLEFIA. Consequently we expect that efficient hardware
implementation can be achieved by sharing components of all key scheduling
algorithms.

2.2.6 Constant Values

There are round constants used in key scheduling algorithm for each key
length. The size of each constant is 32 bits and each value is made from
one 16-bit initial values [71]. Moreover, these constants can be generated
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sequentially from the first 16-bit constant by applying simple bit opera-
tions repeatedly. Therefore, cost for storing constant values in hardware is
significantly reduced if these values are generated dynamically in the imple-
mentation.

2.3 Diffusion Switching Mechanism (DSM)

Here, we describe the search algorithm for the active S-box estimation and
theoretical results of lowerbounds of DSM for Type-2 generalized Feistel
structure [67]%.

2.3.1 Target Structure

First of all, “Type-2” generalized Feistel structure which operates d data
branches (d > 2) are shown. Here, we call a class of structures generalized
Feistel if it is identical with the conventional Feistel structure in case of
d = 2. Our target is “Type-2” generalized Feistel structure. The structures
are defined by Zheng et al. [87]. Several cryptographic properties of the
generalized structure are studied in [34,49].

Let n be an integer djn and Py, ..., Py_1 be n/d-bit plaintext words,
and let Cy,...,Cyq_1 be n/d-bit ciphertext words. Type-2 structure uses a
plural number of F-functions per round, and the number of branches d is
even. Let FZJ(:c,y) be the j-th F-function from the left in the i-th round.
Type-2 generalized Feistel structure is defined as follows.

St@p 1. X0<—P0,...,Xd,1 <—Pd,1
Step 2. For ¢ =1 to r do the following;:
Step 2.1 For j =0 to d/2 — 1 do the following:
Step 2.1.1 X2j+1 — X2j+1 D F‘Zj (RKZJ,XQJ)
Step 2.2 tmp — Xg4_1,
Xj <—Xj_1 ( fOI‘j:d—l to 1),
Xg < tmp
Step 3. Co <—X0,...,Cd_1 <—Xd_1

In the above, RK; (1 < i < r) are provided by a key scheduling part
which is not defined here. Without loss of generality, a swap operation at
the final round is included. Figure 2.5 shows a round function of the Type-2
structure in case of d = 8.

In this report, we assume that the type of F-functions used in these struc-
tures is the SP-type F-function which is one of the popular F-functions [30].
Let [ be the size of S-boxes and let m be the dimension of a diffusion matrix,

2The copyright of this section is owned by The Institute of Electronics, Information
and Communication Engineers (IEICE). (©2008 IEICE
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Figure 2.5: A Round Function of Type-II Feistel Structure (d = 8)

then an SP-type F-function taking an Im-bit round key RK, input data X
and output data Y is defined as:

Step 1. T +— RK & X

Step 2. Let T=Ty | Ty | -+ | Trne1, T; € {0, 1}
T, — S(T;) (fori=0tom—1)
Step 3. Let Y =Yy | Y1 | -+ | Y1, Y €{0,1}

"(Yo, Y1, Y1) = M Y(To, T1, - -+, Tn1)

where A|B denotes a concatenation of data A and B. S(-) denotes an -
bit bijective S-box and M denotes a non-singular m X m matrix over a
chosen field GF(2!). Hereafter MZJ denotes diffusion matrices M used in F-
functions Fij in generalized Feistel structures, respectively. Figure 2.6 shows
an example of an SP-type F-function FZJ in case of m = 4.

RK;

@_> B
SHOom)

X =1 oMy
@ BN

Figure 2.6: F-function FjZ

Using the above definitions, the block length n is now determined by
three parameters d, [ and m as n = dim.
2.3.2 Basic Concepts

Basic concept of DSM is explained using Fig. 2.7. Let M be a non-singular
mxm matrix, and a, b € {{0, 1}}™ are m-dimensional vectors. The left side
of Fig. 2.7 shows that the two output vectors through the same matrix M

21



CHAPTER 2. DESIGN RATIONALE

are XORed to the data line. Suppose that x and y are fixed for 0, it is shown
that w;(a)+w;(b) = 2 is a possible value because M (a+b) = 0 is realized by
a = b, w;(a) = 1 for any fixed M. However, if two different matrices M; and
My are used as in the right side of Fig 2.7, then w;(a)+w;(b) > B;([M;|Ms)),
where [A|B] denotes an m x 2m matrix obtained by concatenating matrices
A and B. From Definition 2.2, B;([M;|Mz]) can be m + 1 at most, which is
optimal diffusion [22,65]. If we put S-boxes just before the matrices as an
SP-type F-function, w;(a)4w;(b) is regarded as the number of active S-boxes
in this case. From this observation, the latter construction can guarantee
larger numbers of active S-boxes if the above conditions are satisfied. DSM
incorporates this property in the whole Feistel structure to raise the lower
bounds.

2.3.3 Type-2 Generalized Feistel Structure using DSM

Next, the DSM is applied to Type-2 generalized Feistel structure. For ex-
ample, Type-2 generalized Feistel structure where d = 6 is illustrated as an
untwisted form as in Fig. 2.8. To use the DSM, two matrices MZJ in Fz-j
and Mij_:; in Fij;; for all possible i and j should satisfy the following DSM
branch number conditions. Note that the indices at the upper right of M
and F' are taken mod d/2, i.e. d/2 =0, and -1 =d/2 — 1.

We define BY, BY and Bl as follows:

Definition 2.3.

By = 1§i§rfr})i2j<d/2(31(Mf)) ;
By = léigr_g}iggj<d/2(l?z([Mij | MI5]D) -
By = win (BT M) )
The above definition directly implies BP > BP.
x=0 x=0

s (Mle e (M)

y=0 y=0

Figure 2.7: Concept of DSM
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Yiil"6

! i
Yirg =4 :
Yits 4

Yi-2+-7 —4

o o o A o o A i

Figure 2.8: Type-2 generalized Feistel Structure(d = 6, Untwisted)

Using these definitions, proven lower bounds of differential and linear
active S-boxes for Type-2 generalized Feistel structure are shown.

Differential Active S-boxes in Type-2 generalized Feistel Structure

Let X Z] and K Zj be an input, a round-key. Dg denotes a number of differential
active S-boxes in F}, respectively. If non-zero difference is input to Type-2
generalized Feistel structure, we use the following properties:

Property 2.1. There is at least one F-function which contains at least one
active S-box in any consecutive 2 rounds.

This property is due to the invertibility of the structure.

Property 2.2. If D] =0, then DJ* = D], and if D] # 0, then D] +
Dijll +Dj,, > BP.
This property is implied by the equation

) ) ) i )
Fij(Kij?Xij) = Xijj_l b Xz']Jrl'

Property 2.3. Ing #0 or DfJ:Ql # 0, then Dg—l—Dg;;—l—ngf—%Di:; > BP.

This property is implied by the equation
S i i 1 -
F(K], X))o Fl o (K, X)) = X7 & X5

Using these properties, we obtain
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Theorem 2.1. Let d > 4. Any consecutive 6 rounds of d-branch Type-2
generalized Feistel Structure using SP-type F-functions guarantee BP + BY
differential active S-boxes.

Proof: We consider 6 consecutive rounds that starts from the a-th round.
To make the proof easy to understand, we put 3d F-functions in the 6 rounds
into the arranged boxes as in Figure 2.9. The width of the boxes is d. F-
functions in the same round are found in the boxes in the same row, and
F-functions in the next rounds are found in the next columns. The region
indicated by a dashed line in Fig. 2.8 shows 6 rounds from ¢-th round for
d =6 case.

0 1 j j+l j+2 d/2-1
F, " F, F, - F, T F, F, —ann
021 art =4 _... J it art = art Eitl _... | pu22 art
a+2 F 421 a+2 a+2 F i1 a+2 Fj a+2 a+2 - 422
F i ar3 F o2 T i ars Fi ar3 = ] F 023 ar3
a+4 e oo a+4 a+4 - 2 a+4 Fit a+4 a+4 a2
a+5 a+5 a+5 a+5

Figure 2.9: Type-2 generalized Feistel Structure (Box form)

Prop. 2.1 guarantees at least one F-function which has a non-zero differ-
ence in the 3rd or 4th rounds, i.e. (a + 2)-th round or (a + 3)-th round.

CASE 1 (Any non-zero difference exists in the 3rd round)
Let D}, # 0. Then Prop. 2.2 and 2.3 imply,

, - ,
Djp+ Dy + Dy > BY (2.1)
, A A A
D)o+ Doy + D)y + Dofs > BY (2:2)
1A 1f D;7; # 0, then Prop. 2.3 implies D, + D5+ Dy + D7, > BY.
By combining it and (2.1), we obtain Y ¢+? Z?fo_l D! > BP + BP.

1B If D), # 0, then Prop. 2.2 implies pg+3 +DI*,+ D/, >BP. By
combining (2.2), we obtain 3 9+° Z?fofl D! > BP + BP.

1=qa

1C 1If D)7y = D}, = 0, then the condition of D}73 = 0 and Prop. 2.2

imply Di;ll = D}, #0. Using the Prop. 2.2 for D]_,, we obtain

Diiy+ Dy + Difs > BY. (2.3)
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Egs. (2.1) and (2.3) have an overlapping term Dé 13, but we assumed Dg 3=
0. As a result, we obtain Y ¢*+° Zd/2 "'DI >2x BP > BP + BP.

The cases for the non-zero difference at other than Di L9 Can also be
proved in the same way.

CASE 2 (Any non-zero difference exists in the 4th round.)
We can prove the same lowerbounds for this case as CASE 1 due to the
symmetry of the structure. O

Linear Active S-boxes in Type-2 generalized Feistel Structure

Similar to the differential case, we write a number of linear active S-boxes
for FY as L. If a non-zero linear mask is input to Type-2 generalized Feistel
structure, we can use the following properties:

Property 2.4. There is at least one F-function which contains at least one
linear active S-box in any consecutive 2 rounds.

This property is due to the invertibility of the structure.

Property 2.5. For any set ofL L i1 and Lz+2’

o LJ Lfﬂ Lf_:2 =0, or
o Lg + L] 1t LZJr2 > BL, and two of the three terms are non-zero.
Using the above properties, we show the following theorem.

Theorem 2.2. Let d > 4. Any consecutive 6 rounds of d-branch Type-
2 generalized Feistel structure using SP-type F-functions guarantee at least
2 x BY linear active S-bozes.

Proof: Similar to Theorem 2.1, we prove that a guaranteed number of active
S-boxes in 6 consecutive rounds which starts from the a-th round.
Prop. 2.4 guarantees at least one F-function which has non-zero linear mask
in the 3rd or 4th rounds, i.e. (a + 2)-th round or (a + 3)-th round.

CASE 1 (Any non-zero linear mask exists in the 3rd round )
L), # 0. From Prop. 2.5, we obtain L], + La+2 + La+3 > BY. Assume
that each term in the inequality is non-zero, we can additionally say

© L +La,—|—1 +La+2 > B2
o L'+ LI + L, > BY

1
© Lzz+3 + La+4 + La+5 > By
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Note that these three terms under consideration are emphasized in a bold
type, and there is no overlapped term in the above three inequalities. Prop. 2.5
implies that at least two of the three terms are non-zero, therefore two of the
above inequalities are valid. As a result, we obtain Zfi;’ Z?L 20_1 Lg > 2x BE

The cases for the non-zero linear mask at other than Lé 4o Can also be
proved in the same way.

CASE 2 (Any non-zero linear mask exists in the 4th round.)
Similarly, we can prove the same lower bounds for this case as CASE 1 due
to the symmetry of the structure. O

2.3.4 Computational Evaluation

In this section we show the other approach to show lower bounds of gen-
eralized Feistel structures. We improve a known search algorithm to fit to
generalized Feistel structures [64].

2.3.5 Basic Search Algorithm

The basic search algorithm counting active S-boxes is introduced in [64].

1. For each candidate in all possible combinations of weight values Dzj
(or L}), (1 <i <) do:

o Check inconsistency between given Dzj s (or Lf s) determined by
aforementioned properties. If they are inconsistent, discard the
candidate, else calculate and store a sum of D/s (1 <1i <r).

2. Output the smallest sum as the lower bound of the target structure.

Properties shown in Sect. 2.3.3 are used to rule out wrong combinations
of weight values. For example, in the properties of Type-2 Feistel structure,
letting BY = 5 and D! # 0, then the case of D/ + DI + D], <5is an
impossible combination implied by Prop. 2.1.

An actual search algorithm is as follows. Let ST r be an R-round gener-
alized structure to be evaluated, and N F; be a total number of F-functions
in the first 7 rounds of STr. Then we define alias names of F-functions
Fi,Foy- -+ v FNFr a8 Fgivj = FZ-] for Type-2 generalized Feistel structures.
Moreover, D; and £; denote numbers of differential and linear active S-boxes
for F;, respectively. The basic algorithm to find the lower bounds of active
S-boxes is shown in Table 2.4.

In the above Func(z) is a recursive function call. To find lower bounds
of linear active S-boxes, D; is replaced with £;, and applied properties are
changed for linear masks.
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Table 2.4: Basic Search Algorithm
INPUT: R (a number of rounds), ST r (target structure)
OUTPUT: a guaranteed number of active S-boxes for S7 r
Main:
Step 1. Set global variable LB = oo
Step 2. Call Func(1)
Step 3. Output LB

Func(z)
Step 4. If x = NFr + 1 do the following:
If LB > Y. '" D, LB « YR D,
Step 5. If x # NFr + 1. For j = 0 to m do the following:
Set D, = j and check whether all properties

for the target structure are satisfied or not.
If check is OK, call Func(xz + 1)

We confirmed that this algorithm works well only for small sized pa-
rameters. Our experimental result shows that even searching for 16-round
Type-1 Feistel structures m = 4, d = 4 requires more than one day. This
huge calculation cost may sometimes be an obstacle to estimate the larger
size of generalized Feistel structures.

2.3.6 Improved Search Algorithm

We speed up the basic algorithm by introducing an additional branch cut-
ting technique. The improved algorithm is shown in Table 2.5. The major
difference between the basic and the improved algorithms is that the im-
proved algorithm makes use of the already obtained lower bounds for smaller
rounds.

At Step 5.2., if the total of the sum of determined active S-boxes in the
first z F-functions and the known lower bound for the rest of rounds already
exceeds temporary lower bounds LB; of the current target number ¢ further
searches are aborted, because this situation never gives a better lower bound.
The branch cutting with this early-abort approach can significantly reduce
the search effort. Our implementation result shows that a search for 50-
round Type-2 Feistel structures when m = 4, d = 4 can be obtained within
a few tens of seconds by the improved algorithm. This improvement enables
us to evaluate larger structures.
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Table 2.5: Improved Search Algorithm

INPUT: R (a number of rounds), ST i (target structure)
OUTPUT: a guaranteed number of active S-boxes for S7 r

Main:
Step 1. Set global variable LB; = 0o (1 <1i < R)
Step 2. For ¢ = 1 to R do the following;:
Call Func(1,1)
Step 3. Output LBg

Func(z,r)

Step 4. If x = NF,. 4+ 1 do the following:

If LB, > Y )7 Dy, LB, « Y27 D).

Step 5. If x # NF,. 4+ 1. For j =0 to m do the following;:
Set D, = j and check whether all properties
for the target structure are satisfied or not.
If the check is OK, do the following;:

Step 5.1. If ¢ {NF|1 <k <r—1},
call Func(z + 1,7).
Step 5.2. If x e {NF;|1 <k <r—1}
Let z be an integer satisfying x = NF}.

1f V% D, + LB, _. < LB,, call Func(z +1,7).
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Security

This chapter describes security of CLEFIA. To estimate security of CLEFIA,
all known attacks of blockciphers are considered. After checking the applica-
bility of each attack, immunity of CLEFIA against each attack is evaluated
in detail by estimating how many rounds of CLEFIA can be attacked. The
twenty types of attacks considered for CLEFIA are listed below:

1. Differential Cryptanalysis

2. Linear Cryptanalysis

3. Differential-Linear Cryptanalysis

4. Boomerang Attack

5. Amplified Boomerang Attack

6. Rectangle Attack

7. Truncated Differential Cryptanalysis
8. Truncated Linear Cryptanalysis

9. Impossible Differential Cryptanalysis
10. Saturation Cryptanalysis

11. Collision Attack

12. Higher Order Differential Cryptanalysis
13. Interpolation Cryptanalysis

14. XSL Attack

15. x? Cryptanalysis
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16. Slide Attack

17. Related-Cipher Cryptanalysis

18. Related-Key Cryptanalysis

19. Related-Key Boomerang Cryptanalysis

20. Related-Key Rectangle Cryptanalysis

These evaluated results are shown in this order in the following sections.
In Section 3.1, security with regard to the data processing part of CLEFIA
is described. Then in Section 3.2, security of CLEFIA including the key
scheduling part is described.

As a result, CLEFTA with 128-bit keys can be attacked up to 12 rounds
(out of 18 rounds), CLEFIA with 192-bit keys can be attacked up to 13
rounds (out of 22 rounds), and CLEFIA with 256-bit keys can be attacked up
to 14 rounds (out of 26 rounds), by impossible differential attacks. However,
full-round CLEFIA for each key length can not be broken even with the
best attacking technique available to date, with less complexity than that
of exhaustive key search.
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3.1 Cryptanalysis I — Data Processing Part

In this section, the following attacks are considered to evaluate the security
of the data processing part of CLEFIA.

1.

2.

10.
11.
12.
13.
14.

15.

Differential Cryptanalysis

Linear Cryptanalysis
Differential-Linear Cryptanalysis
Boomerang Attack

Amplified Boomerang Attack
Rectangle Attack

Truncated Differential Cryptanalysis
Truncated Linear Cryptanalysis
Impossible Differential Cryptanalysis
Saturation Cryptanalysis

Collision Attack

Higher Order Differential Cryptanalysis
Interpolation Cryptanalysis

XSL Attack

x? Cryptanalysis

3.1.1 Differential Cryptanalysis

Differential cryptanalysis is a general technique for the analysis of blockci-
phers, which was proposed by Biham and Shamir [10, 11]. There are two
ways to evaluate the immunity of blockciphers against differential attack,

1.

To show there is no differential which can be used to distinguish from
random permutations

To show there is no differential characteristic which can be used to
distinguish from random permutations
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So far, it is known that it is difficult to achieve the first goal for many
ciphers. Although there is a useful theory proposed by Hong et al. to eval-
uate maximal differential probability of SPN structure, we cannot use the
theory for the evaluations of CLEFIA as AES and FOX because CLEFIA
does not use SPN type structure [22,26,29].

We adopt the remaining approach to estimate probabilities of differential
characteristics. It is known that this can be achieved by counting guaran-
teed numbers of active S-boxes. This approach of counting active S-boxes is
adopted by AES, Camellia and other well-known blockciphers as well [3,22].
The gap between the maximal differential probability and the maximum
differential characteristic probability was not very clear so far, but the rela-
tionship between them was discussed in detail by Daemen and Rijmen [20].
From their result, there is a certain statistical relationship between them
if we accept some statistical assumptions. Thus the characteristics based
approach can be considered as a reasonable way to estimate the immunity
against differential cryptanalysis.

Active S-boxes

In general, there are two ways to show the guaranteed number of differential
active S-boxes of blockciphers. One is to use proved lower bounds of active S-
boxes, the other is to estimate the lower bounds by using a search algorithm.
We checked the both methods for CLEFIA to see which approach has tighter
lower bound. As a result, we found that the implied bounds by theoretical
proofs are not tighter than the search based bounds. Therefore, we use
the results obtained from computer search for the security estimation of
CLEFIA.

Table 2.1 shows the guaranteed numbers of active S-boxes of CLEFIA
obtained by the computer search. Now we focus on the columns indexed by
‘DSM(D)’ which show the guaranteed numbers of differential active S-boxes
corresponding to the round numbers in columns indexed by ‘r’.

Differential Probability of S-boxes used for Estimation

We need the differential probabilities of S-boxes to estimate the immunity
against differential cryptanalysis. There are two S-boxes Sy and Si, each
S-box has maximum differential probability DP30 = 27467 and DP31L =
2760 respectively. From designers’ point of view, CLEFIA’s security against
differential cryptanalysis should be estimated assuming all S-boxes to be Sy,

which has a larger maximum differential probability.

Differential Attack

Combining guaranteed 28 differential active S-boxes for 12-round CLEFIA
(Table 2.1) and DP50 = 27467 it is shown that the maximum differential

max
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characteristic probability DC P12round < 928x(=4.67) — 9=130.76 " Thjs means
there is no useful 12-round differential characteristic for an attacker. Addi-
tionally, there are two reasons that the actual values of DC P, is expected
to be smaller than the above estimation. The first reason is that it is very
difficult to construct a differential characteristic in which all the 28 active
S-boxes use the highest differential probability 27467 simultaneously. The
second reason is that CLEFIA also employs S7 with a smaller maximum
differential probability. Consequently, it is considered to be difficult for an
attacker to find 12-round differentials which can be used to distinguish CLE-
FIA from random permutations. From this observation, we believe that the
full-round CLEFTA is secure against differential cryptanalysis taking the
most efficient key recovery attack into consideration.

3.1.2 Linear Cryptanalysis

Linear cryptanalysis is a general technique for the analysis of blockciphers,
which was proposed by Matsui [43]. In order to evaluate the immunity
against linear cryptanalysis, a similar method to differential attack can be
used, which is a method utilizing the knowledge of the guaranteed number
of linear active S-boxes and maximum linear probability of S-boxes.

The columns indexed by ‘DSM(L)’ in Table 2.1 show the guaranteed
numbers of linear active S-boxes corresponding to the number of rounds in
columns indexed by ‘r’. Since the maximum linear probability LPS0 =
27438 and LP3L,. = 27600 respectively, we assume all S-boxes in CLE-
FIA are Sy. Combining 30 active S-boxes for 12-round CLEFITA and S-
box property, the maximum linear characteristic probability LCPT}%;O“M <
230x—4.38 _ 913140 " Tt ig difficult to construct a linear approximation in
which all the 30 active S-boxes use the highest linear probability 27438 si-
multaneously. Moreover, CLEFIA employs stronger S-box S; with DP,;Z}M =
27600 50 we believe that it is difficult for an attacker to find 12-round linear-

hulls which can be used to distinguish CLEFIA from random permutations.

3.1.3 Differential-Linear Cryptanalysis

Differential-Linear cryptanalysis is a general technique for the analysis of
blockciphers, which was proposed by Langford and Hellman [41]. This crypt-
analysis uses both of differential characteristics and linear approximations.
Letting p be the probability of the differential characteristic used for the
attack and letting g be the probability of the linear approximation used for
the attack, the complexity of the differential-linear cryptanalysis would have
the complexity order of about p?q®. Based on characteristic based analy-
sis, an 8-round distinguisher consists of a 3-round differential characteristic
holding 2-active S-boxes with probability 22%(=467) = 9934 and a 5-round
linear approximation holding 10 active S-boxes with probability 210%(~4.38)
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is the best combination. However, the attack complexity by using this dis-
tinguisher is higher than those by using the best differential distinguisher or
the best linear distinguisher. Therefore, we consider that full-round CLE-
FIA has strong immunity against differential-linear cryptanalysis.

3.1.4 Boomerang Attack

Boomerang attack is an adaptive chosen plaintext and ciphertext attack pro-
posed by Wagner [82]. It is based on a pair of short differential characteris-
tics used in a specially built quartet. The main idea behind the boomerang
attack is to use two short differentials with high probabilities instead of one
differential of more rounds with low probability.

Let n be the block size in bits and k be the key length in bits. We
assume that CLEFIA E : {0,1}" x {0,1}* — {0,1}" can be described as a
cascade ¥ = FEj o Ey, such that for Ej there exists a differential o — ( with
probability p, and for E; there exists a differential v — § with probability
g. The boomerang attack uses the first characteristic (o — ) for Ey with
respect to the pairs (Fy, Py) and (P, P3), and uses the second characteristic
(v — 0) for Ey with respect to the pairs (Cp, Cy) and (C1,C3). The attack
is based on the following boomerang process:

o Ask for the encryption of a pair of plaintexts (Fy, P;) such that Py @
P, = « and denote the corresponding ciphertexts by (Cp, C1).

o Calculate Co = Cy @ and C3 = C1 @ 9, and ask for the decryption of
the pair (Cq,C3). Denote the corresponding plaintexts by (P, P3).

o Check whether P, & P3 = «.

It is easy to see that for a random permutation the probability that the
last condition is satisfied is 27". For E, however, the probability that the
pair (Py, P1) is a right pair with respect to the first differential (a« — () is p.
The probability that both pairs (Cy,C2) and (Cy,C3) are right pairs with
respect to the second differential is ¢2. If all these are right pairs, then they
satisfy

E[H(Co) @ By H(Cs) = 8 = Eo(P2) © Eo(Py),

and thus, with probability p also P» @& P3 = «. Therefore, the total proba-
bility of this quartet of plaintexts and ciphertexts to satisfy the boomerang
conditions is (pq)2. Therefore,

pg > 276
must hold for the boomerang attack to work on CLEFIA.

We found two types of 9-round boomerang distinguishers for CLEFTA,
which are called distinguisher I and distinguisher II. As shown in Table 3.1,
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CLEFIA with at most 9 rounds can be distinguished from a random per-
mutation by using distinguishers I and II. The case III is not actually a
distinguisher which is referred to show the evidence that 10-round extension
from distinguisher I has too low probability. Since it is expected that key
recovery attacks can be mounted for CLEFIA with up to 9 or a few more
rounds, the full-round CLEFTA has enough security against the boomerang
attacks.

Table 3.1: Boomerang Distinguishers

Case Eio0Eq 5

I (Eo, Er) (3.5-round, 5.5-round) 9-round
(p’ q) ( < (2—4.68)2’ < (2—4.67)8) (pq)Q < 9—93.40

I (Eo, 1) (4.5-round, 4.5-round) 9-round
(p7 q) (S (274.68)6’ < (274.67)6) (pq)Q < 9—112.08

1 | (Eo, E1) (3.5-round, 6.5-round) 10-round
(p, q) (S (274.68)27 < (274.67)12) (pq)Q < 9—130.76

Some of differential characteristics used in the above distinguisher are
shown here. For Fy in I, the 3.5-round differential characteristic shown in
Figure 3.1 is used, where a € {0,1}32, b € {0,1}*2, ¢ € {0,1}32 is a non-zero
value such that wg(a) =1, wg(b) = 4, ws(c) = 4, respectively.

0 0 a b

0 a
c 0 "'T

0 a

Figure 3.1: 3.5-round Differential Characteristic for Ey (Distinguisher I)

For Fj in distinguisher I, the 5.5-round differential characteristic shown
in Figure 3.2 (Left) is used, where d € {0,1}?2, e € {0,1}32, f € {0,1}32,
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g € {0,1}32 h € {0,1}*? is a non-zero value such that wg(d) = 1, ws(e) = 4,
ws(f) =4, wg(g) =1, wg(h) = 4, respectively.

Moreover, F7 in distinguisher III can be obtained from F; in distin-
guisher I by simply adding one round at the last iteration (right, Figure 3.2).

0 g d

g 0 h
—»T »T »T »T

d 0 g h 0 g h 0

Figure 3.2: 5.5-round and 6.5-round Characteristics for F; (Distinguisher I,
I1I)

3.1.5 Amplified Boomerang Attack

Amplified boomerang attack is a chosen plaintext variant of the boomerang
attack [32]. The key idea behind the transformation is to encrypt many
plaintext pairs with input difference «, and to look for quartets that conform
to the requirements of the boomerang process.

The analysis in [32] shows that out of N plaintext pairs, the number of
right quartets is expected to be N22-(+1202 where n is the block size in
bits. Therefore, in the case of 9-round CLEFIA, it is expected to see one

right quartet from N = 21130 plaintext pairs. These plaintext pairs can
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be obtained from 29230 structures of 2% x 4 plaintext pairs. Therefore, the
attack requires 29230 x 28 x 4 = 219230 chogen plaintexts.

In the amplified boomerang attack scenario, CLEFIA with at most 9
rounds can be distinguished from a random permutation. Since it is expected
that key-recovery attacks can be mounted for CLEFIA with up to 9 or a few
more rounds, the full-round CLEFTA has enough security against amplified
boomerang attacks.

3.1.6 Rectangle Attack

The rectangle attack shows that it is possible to use all the possible § and
~ simultaneously, and presents additional improvements over the amplified
boomerang attack. These improvements increase the probability of a quartet
to be a right quartet and N plaintext pairs with input difference « are
expected to produce N227"p%¢? right quartets, where p and § are as defined

p= > PPla—g, 4= |Y Pr’ly—d (3.1)
B ol

By using the above observation, the existence of 10-round distinguisher is
strongly implied, because the current characteristic probability of 10-round
CLEFTA for the boomerang attack is slightly smaller than the threshold
27128 (see Table 3.2). However, it is expected that key-recovery attacks
can be mounted for CLEFIA with up to 10 or a few more rounds, so the
full-round CLEFIA has enough security against rectangle attacks.

3.1.7 Truncated Differential Cryptanalysis

Truncated differential cryptanalysis is a general technique for the analysis
of blockciphers, which was proposed by Knudsen [37]. Truncated differen-
tials are differentials where only a part of the difference can be predicted.
Due to the strong byte oriented design of CLEFIA, it is natural that trun-
cated differential cryptanalysis using ‘0’ and ‘1’ to represent each byte data
depending on existence of difference. This approach was adopted to eval-
uate many blockciphers including E2 and Camellia [30,46,48,72]. So far,
it is still an open problem to find systematic ways to evaluate immunity
of Feistel-type blockciphers with SP-type F-functions against the truncated
differential attack. This makes the evaluation of CLEFTA difficult.
However, we can learn from the results of E2 and Camellia because the
both algorithms and CLEFIA have Feistel-type structure. The big difference
with regard to truncated differential attack between two algorithms is that
E2 has SPS-type F-functions but Camellia has SP-type F-functions. Best
known results for them are as follows : E2 has a known 7-round truncated
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differential, and Camellia without FL/FL~! has a 9-round truncated dif-
ferential [30,46,48,72]. The lack of the second S-layer in Camellia can be
considered to be a reason for producing the difference of estimated immunity
against truncated differential attack.

We call modified CLEFIA whose F-function are SPS-type CLEFTA+S.
Moreover we call modified CLEFIA+S whose F-functions do not use diffu-
sion switching mechanism CLEFIA4S-D, in which only a single diffusion
matrix is repeatedly used. We confirmed by a computer simulation that
CLEFIA+S-D with 10 rounds (or more) does not have any useful trun-
cated differentials. Suppose that there is a 9-round truncated differential
for CLEFIA+S-D, we expect that full-round CLEFIA-D is expected to be
strong against truncated differential cryptanalysis from the observation of
the difference between E2 and Camellia. Moreover, if the DSM is enabled,
the immunity is expected to be stronger than the above.

Since these are partial analysis of truncated differential attack obtained
so far, we consider a more convincing evaluation method is required for the

full-spec CLEFIA.

3.1.8 Truncated Linear Cryptanalysis

Truncated linear cryptanalysis is a general technique for the analysis of
blockciphers, which was proposed by the designers of Camellia in the course
of the evaluation of the cipher [2]. Due to the duality between differential
and linear cryptanalysis, the security against truncated linear cryptanalysis
by using a similar algorithm to truncated differential cryptanalysis can be
evaluated [44]. Consequently, we believe that full-round CLEFIA even with-
out DSM is strong against truncated linear cryptanalysis. Moreover, if the
DSM is enabled, the immunity is expected to be stronger than the above.

3.1.9 Impossible Differential Cryptanalysis

The impossible differential is the differential which holds with probability
zero, i.e., the differential which never happens. Using such impossible dif-
ferentials, it is possible to eliminate wrong key candidates and thus find the
correct key [8].

We found following 9-round impossible differential characteristics for
CLEFIA [70].

9r
o (0,a,0,0) - (0,,0,0)

9r
o (0,0,0,a) - (0,0,0, cx)

where a € {0,1}32 is a non-zero value. Figure 3.3 shows the first 9-round
impossible differential characteristic. In the figure, ‘+’ denotes a non-zero
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difference and ‘*’ denotes an unknown difference. The second characteristic

is obtained by rotating the positions of all differences in Figure 3.3.

Contradiction!

Figure 3.3: A 9-round Impossible Differential Characteristic

The designers of CLEFIA show key recovery attacks using the 9-round
impossible differential characteristic in [70]. Table 3.2 shows the summary
of the complexity required for the impossible differential attacks.

After the evaluation by the designers of CLEFIA [70], many results
on improved impossible differential attacks on CLEFIA have been pub-
lished [73,78,79,83,86].

Wang et al.’s attack [83] is based on the same 9-round impossible differ-
ential as [70] and decreased the complexity of recovering subkeys by some
table lookups and sieving less subkey space. Their attack is applicable to
CLEFTA-128 with up to 12 rounds, CLEFTA-192 with up to 13 rounds, and
the CLEFIA-256 with up to 14 rounds.
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Table 3.2: Summary of Impossible Differential Cryptanalysis in [70]

# of key length key # of chosen time
rounds (bits) | whitening | plaintexts | complexity
10 128, 192, 256 w/ 210LT 2102
11 192, 256 w/ 2103.5 2188
12 256 w/o 21038 2252

Tsunoo et al. [79] improved the search method for impossible differen-
tials and found the following 9-round impossible differentials, which utilize
properties of DSM matrices used in CLEFIA:

9r
¢} (0, Qlin, 0, O) 7L> (07 Aoyt 07 0)

9r
o (0,0,0,0ém) 7L> (anaoaaout)

where a;, and gy € {0,1}32 take the differential values shown in Table
3.3. The a and b in Table 3.3 are 8-bit arbitrary non-zero values.

Table 3.3: Differential values for ay,, aout [79]

Qin Aoyt
(0,0,0,a) | (0,0,b,0), (0,b,0,0), (b,0,0,0)
(0,0,2,0) | (0,0,0,b), (0,6,0,0), (b,0,0,0)
(0,2,0,0) | (0,0,0,b), (0,0,b,0), (b,0,0,0)
(a,0,0,0) | (0,0,0,b), (0,0,b,0), (0,b,0,0)

Using the 9-round impossible differential above, Tsunoo et al. [79] re-
duced the complexity for the attack with additional techniques including
movement of the whitening keys and use of a difference distribution table
of the S-box. Their attack is applicable to 128-bit key CLEFIA with up
to 12 rounds, 192-bit key CLEFIA with up to 13 rounds, and 256-bit key
CLEFTA with up to 14 rounds. Furthermore, their attack is extended to a
more efficient attack which recovers more subkey bits with less complexity
by Tsujihara et al. [78]. Their attack is based on the new 9-round impossible
differential where oy, and ayy € {0, 1}32 take the differential values shown
in Table 3.4. The a, b and c in Table 3.4 are 8-bit arbitrary non-zero values.

Table 3.5 shows the current best results of the impossible differential
attacks [78].

Independently, Sun et al. presented their results of impossible differential
attack [73], but the paper was withdrawn afterwards.
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Table 3.4: Differential values for ap, oy [78]

Qin Qoyt
(0,0,0,a) | (0,0,b,c), (0,b,0,c), (b,0,0,c)
(0,0,a,0) | (0,0,b,c), (0,b,c,0), (b,0,c,0)
(0,a,0,0) | (0,b,0,c), (0,b,c,0), (b,c,0,0)
(a,0,0,0) | (b,0,0,c), (b,0,c,0), (b,c,0,0)
(0,0,b,c) (0,0,0,a), (0,0,a,0)
(0,b,0,c) (0,0,0,a), (0,a,0,0)
(b,0,0,c) (0,0,0,a), (a,0,0,0)
(0,b,c,0) (0,0,a,0), (0,a,0,0)
(b,0,c,0) (0,0,a,0), (a,0,0,0)
(b,c,0,0) (0,a,0,0), (a,0,0,0)

Table 3.5: Current Best Results on Impossible Differential Cryptanalysis [78§]

# of key length key # of chosen time memory
rounds (bits) | whitening | plaintexts | complexity | (blocks)
12 128, 192, 256 w/ 21110 2111 281
13 192, 256 w/ oHL8 2195 22
14 256 W/ 2112.3 2220 2113

At Inscrypt 2008, Zhang et al. [86] claimed that CLEFIA-128 without
whitening key layers can be attacked up to 14 rounds by using the same
9-round impossible differential shown in [79]. However, there was a flaw in
the time complexity in the pre-proceedings [86] and we pointed out it [85].
As a result, in the final proceeding version published from Springer [86], the
authors deleted calculation details on the time complexity which appeared
in the pre-proceedings, and described that whether their attack scenario is
successful is waiting to be proved.

So far, impossible differential attacks on CLEFIA have been extensively
studied by the designers and external experts. Neverthless Table 3.5 shows
that it is expected that full-round CLEFIA has enough security against
impossible differential attacks.

3.1.10 Saturation Cryptanalysis

Saturation cryptanalysis was first proposed by Daemen et al. [19] as a ded-
icated attack called “square attack”, which was applied to the blockcipher
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Square. This type of attack is also known as multiset cryptanalysis.

Distinguisher based on Byte Saturation

Typically, the saturation cryptanalysis makes use of byte-oriented structure
of blockciphers. This type of attack works well on AES [23]. Since CLEFIA
also has strong byte oriented structure, we first consider the byte-based
saturation cryptanalysis.

Let X = {X;|X; € {0,1}%} (0 < i < 2%) be a set of all 8-bit values. Now
we categorize status of the set X; into four groups depending on conditions
defined as follows.

o Const (C) :ifVi,j X; = X},
o A1l (A) :if Vi, j ’L#]@XZ#X],

o Balance (B) :if @XZ- =0,
i

o Unknown (U) : unknown.

Then consider the situation that there are 256 plaintexts in which all
bytes are Const except only one A1l byte. Using the conditions, saturation
relationship between input and output for 5-round CLEFTA can be written
as follows.

o((ccceccec)y(cccha (cccece) (ccceoe
M UUUU) (WUUU) (BBBB) (UUTU U))

o((ccccec)y(ceccece)cecece) (cccea)
(BBBB) (WUUU) (WUUU) (UUUTU))

Moreover, if (C C C A) is replaced by one of (C C A C), (CACC), (A
C C C), the above output conditions are valid. As a result, there are eight
saturation paths in total. The first saturation path is depicted in Figure 3.4.
These paths make 5-round CLEFIA distinguishable from a random permu-
tation since Balance is found at the output.

Key Recovery Attack on 7-round CLEFIA

We consider key recovery attacks using the above saturation characteristics.
We assume that there are additional 2 rounds after the 5-round saturation
characteristic (see Figure 3.5), and RK1p and RK3 are the keys to be recov-
ered. This attack uses the fact that only a part of ciphertext C’éﬂ, 02(7), C§7)
and round keys RK;y, RK;3 are required to decrypt the 32-bit data which
is saturated as (B B B B).

In this setting, round keys (RKj9, RK13) € K can be derived as follows:
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(cccce) (cccha (cccoe (ccco

(ccco) (ccco)

(AAAD

_,

(ccco) (ccch

(B B B B)

[}

(ccco) (A A AR

(UUUU) ((ccCcA) |(BBBB) |(BBBB)

TR

(UUUU) (UUUU) (BBBB (UUUU

Figure 3.4: A Saturation Characteristic for 5-round CLEFIA

1. Guess an element kgyess10 for RK1g and Kgyess13 for RKq3 .
2. For each guessed key value,

o For each ciphertext, compute
Zi = Fo(kguess13, Cé”) ) 0957) ,
then compute
Y = Fi(kguessio, Zi) ® C(()?) .
Compute the exclusive-or of all ;, Y = &P, V;.

3. If Y =0, then Kkgyess10, kguess13 is a candidate for RK7g, RK13, respec-
tively. If Y # 0, then the guess is not the correct value for RK1y, RK13,
respectively.

The probability that a key candidate in the key space survives the above
discarding step is expected to be 2732, Therefore, three sets of 256 plaintexts
is enough for narrowing down to one correct key value. The time complexity
is 264 x 28 x 2% calculations of F-function which is about 2% F-function
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Figure 3.5: Key Recovery Attack on 7-round CLEFIA

executions. Consequently, this attack is applicable to 128-bit, 192-bit and
256-bit keys.

Attacks for additional round may be possible, but we expect that the
number of additional rounds is limited as far as the same saturation charac-
teristic is used. However, if we extend the size of saturated word from 8-bit
to 32-bit, we can attack longer rounds of CLEFTA. It is explained below.

Distinguisher based on 32-bit Word Saturation

We consider the 32-bit word oriented saturation attack as follows.
Let X = {X;|X; € {0,1}*?} be a set of all 32-bit values, then we cate-
gorize status of the set of X; into four groups in the same fashion.

o Const (C) :ifVi,j X; :Xj,
o A1l (A) :if Vi, j ’L#]@XZ#X],

o Balance (B) :if @XZ- =0,
i

o Unknown (U) : unknown.

Using these extended conditions, the saturation relationship between
input and output for 6-round CLEFIA can be written as follows.

ccAacoZ@®UUY

cccecaZwusuw

The first saturation path is depicted in Figure 3.6. These paths make
6-round CLEFTA distinguishable from a random permutation since Balance
is found at the output.
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Figure 3.6: Saturation Characteristic (32-bit)

These 6-round distinguishers can be extended into 8-round distinguish-
ers. We first explain how to extend to 7-round distinguishers. Let Agy)
be an All state of 64-bit words, and it is divided into two segments as
Aea) = Bo(ea) | Ay(64)- Using this, we can get the 7-round distinguisher as:

o (C C A0(64) A1(64)) — (B Uuvu U)

o (A0(64) A1(64) CC—(UUBU

These distinguishers require 264 plaintexts.

This is explained as follows. After the first round (C C Ag(gs) A164)) be-
comes (C Agigq) A’1(64) C) where the concatenated segment Aggq) | A’ q(64)
is also A11. It can be viewed that (C Ages) A’1(64) C) contains 232 struc-
tures (C A C C) where the second rightmost constant takes all possible 232
values. Therefore Balance is kept at the output which is directly suggested
by the above 6-round distinguishers.

Extension to 8-round distinguisher is obtained in a similar way. Let A(gg)
be an A11 state of 96-bit words, and it is divide into three segments as A9y =
Aoo6) | A1(96) | Ao(9s)- Using this, we can get the 8-round distinguishers as:

8r
o (Age) C Aro6) A2(96)) — (B U U U)
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o (A0(96) A1(96) A2(96) C) ﬁ (U U B U)
These distinguishers require 2% plaintexts.

In the following, a 9-round attack and a 10-round attack are described.
Key Recovery Attack on 9-round CLEFIA

We assume that there is an additional round after the 8-round distinguishers,
and RK77 is the key to be recovered.

1. Input a set of 2% plaintexts which has the following format:
(Ao96) C A1(96) Ao(96))

2. For the output word Cég), count the frequencies of the values. Then
make a list, LIST, of the 32-bit values with odd frequencies.

3. For the output word C:gg), compute the exclusive-or of the all 276 val-
ues, denoted Y.

4. For all candidates I; € LIST and each guessed key value kgyess for
RK7, compute

7 = @Fl(kguessali) :

o If Z =Y, then kgyess is a candidate for RKy7. If Z # Y, then
kguess is not the correct value for RKq7.

The probability that a key candidate in the key space survives the above
discarding step is expected to be 2732. Therefore, three sets of 232 plain-
texts are enough for narrowing down to one correct key value. The time
complexity is about 23! calculations of F-function for LIST. Consequently,
this attack is applicable to 128-bit, 192-bit and 256-bit keys.

Key Recovery Attack on 10-round CLEFIA

We assume that there are two additional rounds after the 8-round distin-
guishers, and RK;7 and RK;g are the keys to be recovered. Basically, the
scenario is the same as that of the 7-round attack on CLEFIA based on
byte-oriented saturation described in Section 3.1.10.

In this setting, round keys (RK17, RK1g) can be derived as follows:

1. Guess an element kgyess17 for RK17 and Kgyess1g for RKg .

2. For each guessed key value,
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o For each ciphertext, compute
Zi = Fo(kguessiss C(()lo)) ® Cflo) ,
then compute
Y = Fi(kguessir, Z)  C5'7)
Compute the exclusive-or of all Y;, Y = P, ;.

3. If Y =0, then kgyess17, kguessis is a candidate for RK17, RK1g, respec-
tively. If Y # 0, then the guess is not the correct value for RKy7, RK1g,
respectively.

The probability that a key candidate in the key space survives the above
discarding step is expected to be 2732, Therefore, more than two sets of 232
plaintexts are required for narrowing down to one correct key value. The
time complexity is about 2'%® calculations of F-function because at most 232
Fy calculations and 232 I calculations are required for each guessed key (64
bits). Consequently, this attack is applicable to 128-bit, 192-bit and 256-bit
keys.

Although we have shown several versions of key recovery attacks for
reduced-round CLEFIA, the attackable numbers of rounds which will be
extended in the future is expected within a few more rounds. Therefore,
we believe full-round CLEFTA holds strong immunity against saturation
cryptanalysis.

3.1.11 Gilbert-Minier Collision Attack

Gilbert-Minier Collision attack is a kind of saturation attack, which is pro-
posed by Gilbert and Minier [25]. In their original paper, this attack utilized
a special type of 4-round distinguisher customized for Rijndael. It seems to
be difficult to apply the same distinguishing function to CLEFIA. Using this
technique, 7-round Rijndael can be attacked as opposed to 6-round attack
by the normal saturation attack. We also expect that similar technique can
be applied to CLEFIA, but expected gaining is within a few rounds as well.
Therefore, we believe full-round CLEFIA holds strong immunity against
Gilbert-Minier Collision attack.

3.1.12 Higher Order Differential Cryptanalysis

This type of attack was developed in [28,37,40] and works well for block-
ciphers for which the nonlinear components can be represented as Boolean
polynomials of low degree. The attack is based on the following fact: if the
intermediate bits of the blockcipher are represented by Boolean polynomials
of degree d, then the (d + 1)-st order differential of the polynomial is zero.
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For CLEFIA S-boxes Sy and S1, their degrees are 6 and 7, respectively.
In more detail, the S-box Sy consists of four smaller S-boxes, S5y, 5951,
S8, and SS3. Let SS; : {0,1}* — {0,1}* where SS;(zo, 21,72, 23) =
(Yo, y1,Y2,¥3), and if we write y; as a Boolean polynomial in (zo,z1, 2, x3),
then we verified

deg(y;) = 3
holds for all 0 < j < 3. Furthermore, let Sy : {0,1}® — {0,1}® where
So(zo,x1,...,27) = (Y0, ¥1,---,y7), and if we write y; as a Boolean polyno-
mial in (zg,x1,...,27), then we verified

deg(y;) = 6

holds for all 0 < j < 7 by deriving concrete Boolean expressions.
Next, the S-box S is based on the inversion function over GF(28), and it
has the highest possible degree of 8-bit S-boxes. That is, let Sy : {0,1}® —

{0,1}® where Si(zg,21,...,27) = (Yo,¥1,.-.,y7) and if we write Yj as a
Boolean polynomial in (zg, 1, ...,z7), then we verified
deg(y;) =7

for all 0 < j <7 by deriving concrete Boolean expressions.

Therefore, it is expected that the degree of an intermediate bit increases
exponentially as the data passes through the S-boxes, whose degree is at
least 6.

We expect that after passing three S-boxes, it is difficult to collect data
for taking the (d+1)-st order differential since 63 > 128. We believe that the
higher order differential cryptanalysis has limited applications on CLEFIA,
and the full-round CLEFIA is strong enough against this attack.

3.1.13 Interpolation Cryptanalysis

This type of attack was proposed by Jakobsen and Knudsen in [28] and it
works for blockciphers for which the nonlinear components have a simple
mathematical description. The principle of interpolation attack is that, if
the ciphertext is represented as a polynomial or rational expression of the
plaintext whose number of unknown coefficients is IV, then the polynomial
or rational expression can be constructed using N pairs of plaintext and
ciphertext. If the attacker constructs the polynomial or rational expression,
then it is possible to encrypt any plaintext into the corresponding ciphertext
or decrypt any ciphertext into the corresponding plaintext without knowing
the key. Since N determines the complexity and the number of pairs required
for the attack, it is important to make N as large as possible. If N is so
large that it is impractical for the attackers to collect N plaintext-ciphertext
pairs, the blockcipher is secure against interpolation attack.
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For CLEFIA S-boxes Sy and S1, we evaluate the number of terms to
represent them as polynomials in GF(28). Let Sy : GF(2%) — GF(2®) where
So(z) = y, and if we write y as a polynomial in z, then we verify that
the minimum number of terms is 244, where the minimum is taken over all
irreducible polynomials.

Next, for S-box S; : GF(2%) — GF(2%) where S;(x) = y, we verify that
the minimum number of terms is 252, where the minimum is taken over all
irreducible polynomials.

In both cases, the number of terms is close to the maximum value, 255,
for a permutation over GF(2®). Furthermore the use of two S-boxes Sy and
S1 is likely to destroy any mathematical structure from the individual S-box
in few rounds.

We believe it is very unlikely that the interpolation attack will be of any
threat to CLEFIA.

3.1.14 XSL Cryptanalysis

A pure algebraic construction for the S-boxes has many interesting non-
linear properties. However, they may lead to the possible expression of a
blockcipher as a system of sparse, over-defined low-degree multivariate poly-
nomial equations over GF(2) or GF(2%), and this fact may lead to attacks,
as argued by Courtois and Pieprzyk in [18].

In what follows, we estimate the complexity of an XSL attack against
modified version of CLEFIA, called CLEFTA-I, by following the very same
methodology than [18]. We consider the first XSL attack as in [29], where
the goal of the attack is to derive the round keys. Thus, in this scenario, we
do not consider the key scheduling part.

CLEFTA-I is obtained from CLEFIA by simply replacing all 4-bit S-
boxes, SSg, SS1, SSs, and SS3, by an identity function I, i.e., I : {0,1}* —
{0,1}*, where I(x) = x. Notice that attacking CLEFIA-I is much easier
than attacking CLEFIA since the replaced 4-bit S-boxes do not contribute
to increasing the security against XSL attacks.

According to Courtois and Pieprzyk [18], the complexity of the XSL
attack can be estimated to

T with T ~ (t — p)© (%;‘V), (3.2)

where:
o T is the total number of terms,

o w is the complexity exponent of a Gaussian reduction,

o

t is the number of monomials to represent the S-box 571,

o

p is the number of equations,
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0 Siny is the number of S-boxes considered during the attack, and
o The integer, P, is the parameter of the attack.

Now if the S-box on s bits is an affine transformation of the inverse
function in GF(2%), then it will give p = 3s — 1 bi-affine equations true with
probability 1, and one additional equation true with probability 1—27¢ [18].
Based on the similar observation than in [18], we have ¢t = 81 and p = 23.

Next Siny is the total number of S-boxes S1 considered during an attack.
Then for » = 18 we have

Siw = 2% 2 x 18 x 2 = 144,

since each F; is built from two S-boxes, there are two F-functions in one
round, there are 18 rounds, and we need 2 plaintext-ciphertext pairs. Note
that we need 2 known plaintext-ciphertext pairs to uniquely determine the
round keys, since round keys involve both K and L. Similarly, we have
Siny = 2 X 2 x 22 x4 =352 for r =22, and Sjp,y =2 X 2 X 26 x 4 = 416 for
r = 26, since we need at least 4 known plaintext-ciphertext pairs to uniquely
determine the round keys, as round keys involve Ky, Kgr, Ly, and Lg.

There are conditions on the parameter of the attack, P [18]. According
to [29], P is given by

where t' = 25 in our case. This gives P = 8 for r = 18, 22, and 26.

Courtois and Pieprzyk [18] assume that w = 2.376, which is the best
known value obtained by Coppersmith and Winograd [17]. According to [18],
the constant factor in this algorithm is unknown to the authors of [17], and
is expected to be very big. Accordingly, it is disputed whether such an
algorithm can be applied efficiently in practice. For this reason, we will
consider both w = 2.376 and w = 3 in our estimations.

Given above values and based on Eq.(3.2), the total number of terms
can be estimated as T = 818 (1§4) > 250+41 — 991 for CLEFIA-I with r = 18,
which gives the complexity 72376 = 2216 and T3 = 2273, For CLEFIA-I
with 7 = 22, we have 7' = 818(%3%) > 250+52 = 2102 and thus 7376 = 2242
and 7% = 2%, Finally, for CLEFIA-T with r = 26, we have T = 81%(*}%) >
950+54 _ 9104 2376 _ 9247, q T3 — 9312,

A summary of our estimations is given in Table 3.6. At the light of the
previous discussion, we should interpret these figures with an extreme care:
on the one hand, the real complexity of XSL attacks is by no means clear
at the time of writing and is the subject of much controversy [42,51].

Furthermore, we are eliminating Sy, which is the highly impractical and
most pessimistic hypotheses that Sy has no contribution on the strength
against XSL attacks. We believe the actual attack against original CLEFTA
must be much harder than this estimation.
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Table 3.6: Estimations of Complexity of XSL Attacks against CLEFIA-I.

w=2376 | w=3
r=18 2216 2273
r =922 2242 2306
r =926 2247 2312

So far, we have considered the XSL attack on GF(2), and the XSL tech-
nique on GF(2%) may lead to an efficient key recovery attack [18]. At the
time of this writing, it is not possible to check the effectiveness of this ap-
proach as pointed out in [42], and we believe that the XSL estimates do
not have the accuracy needed to substantiate claims of the existence of an
efficient key recovery attack based on the XSL technique. Still, we believe
two S-boxes, Sy and S, make the applicability of the XSL technique sub-
stantially harder than the single S-box case, and prevent possible attacks
based on the XSL attacks.

3.1.15 ? Cryptanalysis

The x? cryptanalysis is a kind of statistical attack for the analysis of block-
ciphers. This attack was originally proposed by Vaudenay [80], and was
applied to RC6 by Gilbert et al. [24] and Knudsen and Meier [35], inde-
pendently. In [35], Knudsen and Meier attacked up to 15-round RC6 with
general keys and 17-round RC6 with weak keys. The vulnerability of RC6
against y? cryptanalysis consists in the use of data dependent rotations in
the design of RC6. We consider there is no correlation useful for x? attacks
in the design of CLEFIA. Therefore, we believe the x? cryptanalysis does
not work on the full-round CLEFIA.
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3.2 Cryptanalysis II — Key Scheduling Part

In this section, security of CLEFIA including the key scheduling part is
evaluated.

3.2.1 Slide Attack

Slide attack is a general technique for the analysis of a key scheduling part of
blockciphers, which was proposed by Biryukov and Wagner [12]. So far, it is
known that there is a good countermeasure against slide attack using round
constants independent of each round. In CLEFIA there are round constants
shown in the specification. Therefore CLEFIA is expected enough immunity
against the slide attack.

3.2.2 Related-Cipher Attack

Related-cipher attack is a general technique for the analysis of a key schedul-
ing part of blockciphers, which was proposed by Wu [84]. Consider a block-
cipher whose numbers of rounds vary depending on the lengths of key, and
whose round keys set for all key length are identical expect the round keys
for additional rounds. In this case, these blockciphers with different num-
ber of rounds are called ‘related’, and the longer-round cipher will be easily
crypt-analyzed by using shorter-round encryption results if round keys of
them are the same. Due to the similarity between the key scheduling al-
gorithms of 192-bit key and 256-bit key of CLEFIA, there is a risk for this
attack. In order to avoid the related-cipher attack, CLEFIA uses different
sets of round constants for each key length [71]. This is the same case as
the slide attack. Therefore CLEFIA is expected to have enough immunity
against the related-cipher attack.

3.2.3 Related-Key Cryptanalysis

Biham proposed related-key cryptanalysis [7]. This attack considers the
information that can be extracted from two encryptions using related keys.
The concept was used by Kelsey et al. in [33] to present the idea of related-
key differentials. These differentials study the development of differences in
two encryptions under two related keys.

A related-key differential is a triplet of a plaintext difference AP, a
ciphertext difference AC, and a key difference AK, such that

PriEx(P) @ Exeax(P ® AP) = AC]

is high enough (or zero).
As for CLEFIA with 128-bit keys, L is generated by using GFNy 12
where GFNy 12 is a 12-round generalized Feistel structure with 4 data lines.
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As in Table 2.1, GFN, 2 has at least 28 active S-boxes, and we have
DCPpgy < 228%(=4.67) — 913076 Therefore, for any AK and AL, a dif-
ferential characteristic probability of (AK — AL) is expected to be less
than 27128 i.e., no useful differential (AK — AL) exists. This implies the
probability of any related-key differential (AP, AC, AK) is less than 27128,
if all the information on AL is needed, since all the bits in L are used as
round keys in 2 consecutive rounds. Other types of distinguishers may use
(AK — AL), where some of the words in AL are unknown. We consider
these types of distinguishers have limited effect since the unknown word
propagates to all words in at least 3 rounds. Also we are not aware of any
related-key differential with probability zero.

For CLEFIA with 192 and 256-bit keys, (Lr, Lr) is generated by apply-
ing GFNg 109, where GFNg 19 is a 10-round generalized Feistel structure with
8 data lines. The round keys for GFNg 19 are fixed constants determined by
the key length. From Table 2.3, it has at least 29 differential active S-boxes,
which implies there are no differential characteristics with probability more
than 27'28. That is, for any (AKy, AKg) and (ALp, ALR), a differential
characteristic probability of (AKr,AKgr) — (ALr,ALR)) is expected to
be less than 27128, Therefore, the probability of any related-key differential
(AP, AC, (AKp,AKR)) is less than 27128 if all the values of (ALy, ALR)
are needed, since all the bits in L, and Ly are used as round keys in at least
6 consecutive rounds.

Other types of distinguishers may use ((AKp,ALg) — (ALL,ALR)),
where some of the words in (ALy, ALg) are unknown, but this is not effec-
tive as in the case for CLEFTA with 128-bit keys.

Therefore, we believe full-round CLEFIA holds strong immunity against
related-key cryptanalysis.

3.2.4 Related-Key Boomerang Cryptanalysis

The main idea behind the attack is to use two short related-key differentials
with high probabilities instead of one long related-key differential with a low
probability.

Let n be the block size in bits and k£ be the key length in bits. As in
the case for the boomerang attack, we assume that CLEFIA E : {0,1}" x
{0,1}* — {0,1}" can be described as a cascade E = Ej o Ey, such that for
Ey there exists a related-key differential « — 8 under a key difference AKj
with probability p, and for I there exists a related-key differential v — §
under a key difference AK; with probability q.

The related-key boomerang process involves four different unknown (but
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related) keys K,, K, K., Kg:

K,

K, = K,®AK)y,

K. = K,®AKj,

K; = K,®AKyd AK;

The attack is performed by the following algorithm:
o Choose a plaintext P, at random and compute P, = P, ® .

o Ask for the encryption of P, under K, (C, = Ek,(P,))) and P, under
Ky (Ch = Ek, (B))-

o Compute C. =C, @ and Cy = C, ® 6.

o Ask for the decryption of C, under K., ie., P. = EI_(i(CC) and P; =
E(Ca).

o Test whether P. ¢ P; = a.

It is easy to see that for a random permutation the probability that the
last condition is satisfied is 27". For E the probability that this condition
is satisfied is p?¢? just like for a regular boomerang attack, and we need
(pq)? > 27128 ie., pg > 2754, in order to attack CLEFIA.

As we have seen in the previous section, since we employ GFNy 12 for
128-bit key schedule and GFNg 10 for 192/256-bit key schedules in CLEFIA,
it is very hard to achieve the condition pg > 274, Indeed, we are not aware
of Fy and Fy with more than a few rounds satisfying this condition.

Therefore, we believe it is very unlikely that the attack will be of any
threat to CLEFIA.

3.2.5 Related-Key Rectangle Cryptanalysis

The transformation of the related-key boomerang attack into a related-key
rectangle attack is similar to the transformation of the boomerang attack
into the rectangle attack. Assume that E can be decomposed as before,
where «, 9, p, ¢, K., Ky, K., and K, have the same meaning. Then, the
related-key rectangle distinguisher is as follows:

o Choose N plaintext pairs (P, P), where P, = P, ® «, at random and
ask for the encryption of P, under K, and of P, under Kj.

o Choose N plaintext pairs (P., P;), where Py = P. ® «, at random and
ask for the encryption of P, under K. and of P; under Kj.

o Search for quartets of plaintexts (P,, Py, P., Py) and the corresponding
ciphertexts (Cy, Cy, C., Cy), satisfying C, ® C. = Cy, & Cy = 6.
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Then starting with NV plaintext pairs with input difference « to be encrypted
under K, and K3, we expect N227"(p§)? right quartets.

The attack requires (pg)? > 27128 in order to apply to CLEFIA, how-
ever, we have not found Ey and F7 more than a few rounds satisfying this
condition. Therefore, we believe CLEFIA is strong enough against this at-

tack.
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Performance Evaluations

This chapter describes performance evaluations of software implementations
and hardware implementations of CLEFIA, and security against side channel
attacks for CLEFIA.

4.1 Software Implementations

This section describes performance evaluations of software implementations
of CLEFIA. We present the evaluation results on current software perfor-
mance of CLEFIA both in C language and in assembly language. The
platforms we evaluated are summarized in Table 4.1.

Table 4.2 shows the evaluation results of CLEFIA in C language. We
measured software processing speed of encryption/decryption and key setup
using the rdtsc instruction.

We estimated the memory usage of CLEFIA software implementations.
The results are shown in Table 4.3. We measured the stack usage by using
the checkstack.pl script, which is included in recent Linux kernel sources,
and counted the maximum stack usage based on the output of objdump.

Table 4.4 shows software performance results in assembly language on

Table 4.1: Evaluation platforms

Plat- Processor Clock (ON] Compiler
form [GHz]
1 AMD Opteron 2.6 Red Hat gee 3.2.3
Enterprise Linux 3
2 Intel Core2 Duo 2.4 Windows Vista Intel C++
(32-Dbit) Compiler 11.0
3 Intel Core2 Duo 2.4 Windows Vista Intel C++
(64-Dbit) Compiler 11.0
4 AMD Athlon 64 2.4 Windows XP Microsoft Visual
4000+ (64-bit) Studio 2005
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Table 4.2: Results on Software Performance of CLEFIA (C language)

Plat- Key Encryption Decryption Key Setup Key Setup
form | Length (Encryption) | (Decryption)
[bit] [cycles/byte] | [cycles/byte] [cycles] [cycles]
1 128 17.7 18.0 442 517
192 21.5 21.8 683 789
256 25.2 25.6 734 859
2 128 18.7 19.7 304 385
192 22.6 23.7 545 653
256 26.4 28.0 590 722
3 128 17.6 18.5 325 446
192 21.4 22.1 460 616
256 25.0 25.8 493 683
4 128 19.0 19.1 386 452
192 23.0 23.0 583 681
256 26.8 27.0 627 720

Table 4.3: memory usage
| code size [byte] | stack usage [byte] |

\ 17955 \ 224 |

platform 4. We measured software processing speed of encryption/decryption
and key setup for two type of implementations: the single-block (com-
mon) implementation and the two-block parallel implementation [45]. In
the single-block implementation, 12.9 cycles/byte (1.48 Gbps on the proces-
sor) is achieved. The two-block parallel implementation, which is suitable
for parallelizable modes such as CTR mode and CBC decryption, achieves
11.1 cycles/byte.

4.2 Hardware Implementations

This section describes performance evaluations of hardware implementations
of CLEFTA. We implement two types of architecture for CLEFIA with 128-
bit key and a type of architecture for CLEFIA with 192/256-bit key. We
evaluate gate size and throughput of each implementation using an ASIC
library.

For CLEFIA with 128-bit key, two types of architecture are implemented:
the loop architecture and the compact architecture. The loop architecture is
straightforward hardware implementation taking 1 cycle per round, where
both F-functions Fy and F} are implemented in parallel. In the compact
architecture, the F-functions Fy and Fj are merged into an Fy/F} circuit in
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Table 4.4: Results on Software Performance of CLEFIA (assembly language)

Type of Key | Encryption | Decryption | Key Setup Key Setup
Implemen- || Length (Encryption) | (Decryption)
tation [bit] |[cycles/byte] | [cycles/byte] [cycles] [cycles]

128 12.9 13.3 217 229

single-block 192 15.8 16.2 272 293
256 18.3 18.4 328 357

two-block 128 11.1 11.1 217 229
parallel 192 13.3 13.3 272 293
encryption 256 15.6 15.6 328 357

order to reduce circuit area. The Fy/F; circuit is used as Fj in one cycle
and F) in another cycle, so that it takes 2 cycles per round. The latency
of loop and compact architecture for encryption/decryption is 18 and 36,
respectively.

For CLEFIA with 192/256-bit key, only the loop architecture is imple-
mented. The latency of encryption/decryption for CLEFIA with 192-bit
and 256-bit key is 22 and 26, respectively.

The environment of our hardware design and evaluation is as follows:

Language Verilog-HDL
Design library ~ 0.09 yum CMOS ASIC library
Simulator VCS version 2005.06

Logic synthesis Design Compiler version 2006.06

One gate is equivalent to a 2-way NAND and the speed is evaluated under
the worst-case conditions.

Table 4.5 represents the evaluation results. For each implementation,
two types of circuit are synthesized by specifying either area or speed opti-
mization. We also show, for comparison, the best known results of hardware
performance of AES and Camellia [61]. The synthesized circuit of CLEFIA
with 128-bit key in loop architecture occupies only 5,979 gates with efficiency
of 268.63 Kbps/gate. Moreover, less than 5 Kgates is achieved for CLEFIA
with 128-bit key in compact architecture. Although we take into account
the difference of ASIC libraries, these figures indicate that CLEFIA satisfies
both low cost and high efficiency in hardware implementation compared to
AES and Camellia.

4.3 Security against Side Channel Attacks

This section describes security against side channel attacks for CLEFIA.
Since CLEFTA has similar SP-type F-function with 8-bit S-boxes to AES,
it was reported that similar cache-based timing attacks as AES [6,54] was
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Table 4.5: Results on Hardware Performance of CLEFIA
Key |Enc/Dec|Key Setup| Area | Freq.| Speed | Speed/Area
Length| (cycles) | (cycles) |(gates)| (MHz)| (Mbps)|(Kbps/gate)
128 18 12 5,979 | 225.83 | 1,605.94 268.63
12,009 | 422.29 | 3,003.00 250.06
36 24 4,950 (201.28 | 715.69 144.59
CLEFIA 9,377 | 389.55 | 1,385.10 147.71
(0.09pm) 192 22 20 8,536 | 206.56 | 1,201.85 140.81
15,718 1 391.08 | 2,275.39 144.76
256 26 20 8,482 | 206.56 | 1,016.95 119.89
15,5421 391.08 | 1,925.33 123.88
128 11 N/A 12,4541 145.35 | 1,691.35 135.81
AES [61] 21,337 | 224.22|2,609.11 122.28
(0.13pm) 54 N/A 5,398 [ 131.24| 311.09 57.63
9,227 (220.75| 523.26 56.71
128 22 N/A 10,993 1166.94| 971.29 88.36
Camellia [61] 16,905 | 256.41 | 1,491.84 88.25
(0.13pm) 44 N/A 6,511|111.98| 325.76 50.03
12,231 238.10| 692.65 56.63

For each implementation, the above and below columns show the results of the
synthesized circuits by area and speed optimization, respectively.

applicable to CLEFIA [57,60]. On the flip side, it is likely that the same
countermeasures, such as bit-slicing techniques, which are employed to pro-
tect AES from cache-based timing attacks will also applicable to CLEFIA.
It was also reported that similar differential fault analysis as AES [55] was
applicable to CLEFIA [16,75,76].

As for power analysis [39] and electromagnetic analysis [56], many logic-
level countermeasures such as dual-rail logics [77] and masking logics [74]

are applicable to implementations of CLEFIA.
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Evaluations by External
Researchers

CLEFIA had been evaluated by external researchers in 2007. Evaluators
are Prof. Alex Biryukov, Prof. Vincent Rijmen and Prof. Serge Vaudenay,
and it is also evaluated by Prof. Lars R. Knudsen, and Prof. Bart Preneel
of ABT. We received their evaluation reports between July and September
2007, and now the reports can be obtained from the CLEFIA’s web site
(http://www.sony.net/clefia) [13,38,58,81]. These reports show evaluation
results and additional comments on the security aspects of the design of
CLEFTA based on input documents to the evaluators. The input documents
are also available on the web site, they consists of specifications [68], design
rationale [69] and self-evaluations [70] written by designers.

In the course of evaluation, we asked some questions including that “Do
you think SONY’s cipher algorithm is secure against the current cryptana-
lytic techniques?”. All of the evaluators answered in the affirmative. Please
see the evaluation reports for the details.
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